Borrowing information from relevant microarray studies for sample classification using weighted partial least squares

Xiaohong Huang

Eli Lilly and Company Indianapolis, IN 46285

Outline

Introduction

- Statistical classification methods for microarray data
 - Partial least squares (PLS)
 - Penalized partial least squares (PPLS)
 - Applications of PPLS to Minnesota data and PGA data
- Classification with combined data of multiple studies
 - PLS with a conjugate gradient path
 - Weighted PLS/PPLS
 - Experiment: Combined data
- Summary and discussion

Introduction

- Traditional medical diagnosis/classification method is very subjective
 - Based on morphological characteristics, pathological features
 - Depends on highly trained pathologists

Limitation: Hard to diagnose disease subtypes that are morphologically similar but follow different clinical courses.

- New classification method is objective
 - Based on microarray gene expression data.
 - Can be highly accurate.

Potentials: diagnose disease subtypes; predict clinical outcomes...

Example: Two-class microarray

Notations:

Class 1Class 21... n_1 n_1+1 ... $n_1+n_2 = n$ gene 1 $X_{1,1}$... X_{1,n_1} $X_{1,n_{1+1}}$... $X_{1,n}$ gene 2 $X_{2,1}$... X_{2,n_1} $X_{2,n_{1+1}}$... $X_{2,n}$ \vdots \vdots \vdots \vdots \vdots \vdots \vdots gene p $X_{p,1}$... X_{p,n_1} $X_{p,n_{1+1}}$... $X_{p,n}$

• Outcome $Y = (y_1, y_2, ..., y_n)'$.

• Covariates $X_i = (x_{i1}, x_{i2}, \dots, x_{in})'$, $i = 1, \dots, p$. Covariates are often standardized $var(x_i) = 1$.

A special feature of microarray data:

Small n, large p

- A simple prediction problem:
 - Our goal is to predict Y from $X_1, X_2, ..., X_p$ by a linear model.
 - Especially interested in problems where $p \gg n$.
- Many new methods have appeared
 - Weighted voting, Compound covariate,...
 - Penalized regression: Shrunken centroids, LASSO,...
 - Machine learning: SVM, Bagging/boosting trees,...

Penalized Partial Least Squares

- Partial Least Squares (PLS)
 - Particularly suited for constructing linear models when there are more variables than observations.
 - Robust to the collinearity between covariates.
 - Suited for fitting linear models with microarray data.
- Penalized Partial Least Squares (PPLS)
 - A penalized regression method built on the framework of PLS.

Ref: Huang, X. and Pan, W. (2003). Linear regression and two-class classification with gene expression data. *Bioinformatics* **19**, 2072-2078.

Application to the Minnesota data: PPLS

Minnesota data

- Oligonucleotide microarray data obtained by Hall et al. (2003) in a heart failure study conducted at the Medical School of UMN.
- Contain 30 samples: 10 ischemic, 7 ischemic with acute MI and 13 idiopathic.
- Affy HG-U133A chips: Contain 22,283 genes.
- Initially processed in MAS 5.0.

Goal: Distinguish between the ischemic and the idiopathic etiology classes.

Initial gene ranking

Given gene *i*

$$F_{i} = \frac{MS_{class}}{MS_{error}} = \frac{(\sum_{c=1}^{C} n_{c}(\bar{x}_{i_{c}} - \bar{x}_{i})^{2})/(C-1)}{(\sum_{c=1}^{C} \sum_{j \in c} (x_{ij} - \bar{x}_{i_{c}})^{2})/(n-C)}$$

 x_{ij} : gene expression intensity of gene *i* and sample *j*.

 n_c : number of samples in class c, $n = \sum_{c=1}^{C} n_c$: total sample size.

C: number of classes.

 \bar{x}_{i_c} : mean gene expression of class c.

 \bar{x}_i : overall mean gene expression.

Genes with larger F-statistics -> higher rank.

Experiment: Minnesota data

• LOOCV error (lsch vs Idio, n = 23)

# of top genes	PPLS	SC	LASSO		
50	10	5	6		
100	7	5	7		
200	9	7	11		
800	6	8	4		
1600	5	8	8		
9600	9	8	7		
16000	8	7	8		
22283	9	5	7		

Application to the PGA data: PPLS

PGA data

- Oligonucleotide microarray data obtained in a heart failure study conducted at the PGA Medical School.
- Contain 36 samples: 11 normal, 11 ischemic, and 14 idiopathic.
- Affy HG-U133 plus 2 chips: Contain $\sim 54,000$ genes.
- Initially processed in MAS 5.0.

Goal: Distinguish between the ischemic and the idiopathic etiology classes.

Experiment: PGA data

• LOOCV error (lsch vs Idio, n = 25)

# of top genes	PPLS	SC	LASSO
50	3	2	2
100	1	2	1
200	1	2	1
800	1	1	3
1600	1	1	2
9600	1	1	1
16000	1	1	1
22277	1	1	1

A summary on the above experiments

- The LOOCV misclassification error
 - ranges from 5 to 11 for the Minnesota data (23 samples).
 - ranges from 1 to 3 for the PGA data (25 samples).
- These highlight some existing differences underlying the two datasets.
- A question: Is there any signal/predictive information in the data?

Permutation test: Minnesota data

• LOOCV error (lsch vs Idio, n = 23)

# of	Origina	l data		Permutated data						
top genes	CV errors	P-value	0%	25%	50%	75%	100%			
50	5	.00	5	10	11	12.75	19			
100	5	.00	5	10	11	12	19			
400	7	.06	4	9	11	13	17			
1600	8	.08	5	9.25	11.5	13	17			
6400	9	.12	6	10	11	13	21			

Borrow information from relevant studies

- To increase the statistical power, borrow information from other relevant studies.
- A key difference from meta-analysis:
 - Not assuming current study shares a common set of parameters with other studies.
- Example: Identifying genes associated with ventilator-associated lung injury (VALI) based on a human study.
 - Meta-analysis: Only interested in the genes associated with VALI which are conserved across the species over the evolutionary history (Grigoryev et al. 2004).
 - Our analysis: Interested in inference on a set of parameters specific for humans.

Combining Minnesota and PGA data

- Classification with the combined data.
 - Goal: Distinguish etiologies of heart failure for Minnesota patients while treat the PGA data as secondary.
 - Problem: Unobserved differences in patient characteristics.
 - Solution: Treat samples in different studies unequally, e.g, assign different weights.
- Combining Minnesota data and PGA data.
 - Technically easy: all probe sets present on U133A chip are identically replicated on U133 Plus 2 chip.
 - Data mapped by probe set ID (6 could not be found).

Notations

Given X, to predict Y with a linear model $F(X, \mathbf{a}) = a_0 + \sum_{i=1}^{p} a_i x_i$, the goal is to minimize the expected loss (risk):

$$R(\mathbf{a}) = E_Y L(Y, F(X, \mathbf{a})).$$

- $L(Y, F(X, \mathbf{a}))$: loss criterion.
- An empirical estimate of the expected loss:

$$\widehat{R}(\mathbf{a}) = \frac{1}{n} \sum_{j=1}^{n} L(y_j, a_0 + \sum_{i=1}^{p} a_i x_{ij}).$$

The optimal values of a:

$$\hat{\mathbf{a}} = \arg\min_{a} \frac{1}{n} \sum_{j=1}^{n} L(y_j, a_0 + \sum_{i=1}^{p} a_i x_{ij}).$$

Partial Least Squares (PLS)

Conjugate gradient procedure under squared error loss:

$$\hat{\mathbf{a}}_{k+1} = \hat{\mathbf{a}}_k + \rho_k \mathbf{s}_k$$
$$\mathbf{s}_k = \mathbf{g}_k + \frac{\mathbf{g}_k^T \mathbf{g}_k}{\mathbf{g}_{k-1}^T \mathbf{g}_{k-1}} \mathbf{s}_{k-1}$$

9 \mathbf{g}_k : negative gradient at $\hat{\mathbf{a}}_k$

$$\mathbf{g}_{k} = -\frac{\partial}{\partial \mathbf{a}} \,\widehat{R}(\mathbf{a}) \,\Big|_{\mathbf{a}=\hat{\mathbf{a}}_{k}}$$

• ρ_k : step size

$$\rho_k = argmin_\rho \widehat{R}(\hat{\mathbf{a}}_k + \rho \mathbf{s}_k)$$

k: number of PLS components.

• Squared error loss: $L(Y, F(X, \mathbf{a})) = (Y - F(X, \mathbf{a}))^2/2$.

Propose: Weighted PLS

Expected loss estimated by a weighted average loss:

$$\widehat{R}_w(\mathbf{a}) = \sum_{j=1}^n w_j L(y_j, a_0 + \sum_{i=1}^p a_i x_{ij}).$$

Conjugate gradient procedure under squared error loss:

$$\mathbf{g}_k = -\frac{\partial}{\partial \mathbf{a}} \,\widehat{R}_w(\mathbf{a}) \,\Big|_{\mathbf{a}=\hat{\mathbf{a}}_k} = Z^T W(Y - Z\hat{\mathbf{a}}_k)$$

$$\rho_k = \operatorname{argmin}_{\rho} \widehat{R}_w(\widehat{\mathbf{a}}_k + \rho \mathbf{s}_k) = \begin{cases} 1 & \text{if } Z \mathbf{s}_k = 0\\ \frac{(Z \mathbf{s}_k)^T W(Y - Z \widehat{\mathbf{a}}_k)}{(Z \mathbf{s}_k)^T W(Z \mathbf{s}_k)} & \text{if } Z \mathbf{s}_k \neq 0 \end{cases}$$

• $W = diag(w_1, \dots, w_n)$: diagonal matrix with weights, $\sum_{j=1}^n w_j = 1$.

•
$$Z = (\mathbf{1} X_1 X_2 \cdots X_p)_{n \times (p+1)}$$
: covariate matrix.

Propose: Weighted PPLS

- Weighted PPLS
 - A weighted PLS model with a conjugate gradient path.
 - Penalized regression in the framework of weighted PLS.
 - Similar to the PPLS construction.
- Weighted PLS model: $Y = b_0 + \sum_{i=1}^p b_i (X_i \bar{x}_i \mathbf{1})$
- Penalize b_i by soft-thresholding:

$$b'_{i} = \arg\min_{\beta_{i}}(\beta_{i} - b_{i})^{2} + \lambda |\beta_{i}|$$

•
$$b'_i = sign(b_i)(|b_i| - \lambda)_+$$
.

- $f_+ = max(f, 0)$.
- λ : shrinkage parameter.

Experiment: Combined data

- LOOCV error of predicting Minnesota samples
 - Weighted PPLS classifiers.
 - Top 200 genes

	Shrink 0%					Shrink 40%				Shrink 80%					
w = PGA	PLS components k					PLS components k				PLS components k					
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
0	5	9	6	7	7	5	8	8	6	5	5	8	7	6	7
1/4	6	8	6	6	5	5	7	4	3	5	8	7	2	4	3
1/2	5	8	6	4	6	6	7	3	4	5	7	7	2	3	2
3/4	4	7	7	4	6	6	7	4	4	6	8	6	2	2	2
1	5	7	7	4	7	6	7	4	4	6	8	5	3	2	2

Summary

- Weighted PPLS:
 - Penalized regression in a framework of weighted PLS.
 - Penalization/shrinking can improve over weighted PLS.
- Weighted PPLS methods with combined data:
 - Account for possible different relevances of the other studies by weighting.
 - Improve the performance of the classifier using data from a single study.

General application

- Broad scope of the weighting scheme:
 - Applicable when the PGA data only contain ischemic and normal groups.
- Further extendable:
 - The primary and secondary experiments were conducted under different (but relevant) conditions, or on different organisms.
 - Microarray data with a survival end point.
 - Other loss functions.

Reference

- Huang, X., Pan, W., Grindle, S., Han, X., Chen, Y., Park, S.J., Miller, W.L., Hall, J. (2005). A comparative study of discriminating human heart failure etiology using gene expression profiles. *BMC Bioinformatics* 6:205.
- Huang, X., Pan, W., Han, X., Chen, Y., Miller, W.L., Hall, J. (2005). Borrowing information from relevant microarray studies for sample classification using weighted partial least squares. *Computational Biology and Chemistry* 29(3), 204-211.